Trigonometric Functions Cheat Sheet

Reciprocal trigonometric function

This chapter introduces three more trigonometric functions, known as the reciprocal trigonometric unctions:

$$
\begin{array}{lll}
\text { - } & \sec x=\frac{1}{\cos x} & \text { (undefined for values of } \mathrm{x} \text { for which } \cos x=0 \text {) } \\
\text { - } & \operatorname{cosec} x=\frac{1}{\sin x} & \text { (undefined for values of } \mathrm{x} \text { for which } \sin x=0 \text {) } \\
\text { - } & \cot x=\frac{1}{\operatorname{tanx}} & \text { (undefined for values of } \mathrm{x} \text { for which } \tan x=0 \text {) }
\end{array}
$$

Since division by zero is undefined, we have that these functions are undefined when the denominators are equal to zero.

Note that $\cot x=\frac{1}{\tan x}=\frac{\cos x}{\operatorname{sinx}}$, simply by replacing tanx with $\frac{\sin x}{\cos x}$. This will sometimes be a more useful form to use.
Trefu It is not true that: $\sec x=(\cos x)^{-1}, \operatorname{cosec} x=(\sin x)^{-1} \cot x=(\tan x)^{-1}$ The negative power has a different meaning when used with trigonometric functions.
raphing the reciprocal functions
ou need to be able to sketch the reciprocal trigonometric functions as well as any transformations, using radians and degrees. Below are the graphs of the reciprocal functions

Reciprocal trigonometric identitie
 Recall from Pure Year 1 , that $\sin ^{2} x+\cos ^{2} x=1$

Taking [1], let us divide through by $\sin ^{2} x$:

$\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x}$	This gives us the following identities:
$1+\cot ^{2} x=\operatorname{cosec}^{2} x$	$-1+\cot ^{2} x=\operatorname{cosec}^{2} x$

simplifying expressions and proving identities

vou can use the definitions and identities we have covered so far to simplify and prove expressions involving the reciprocal You can use
trig functions.
here is no trick or standard procedure to be used for these questions. Your ability to manipulate trigonometric expressions using reciprocal functions and identities is being tested, so the most useful thing you can do is properly familiarise yourself with these functions and the above identities. As with most of mathematics, the most useful tool here is practice
When proving identities, you must start from one side and work your way towards the other side. You can start from any side, so pick whichever seems like an easier starting point.

Example 1: Prove that $\sec ^{2} x+\operatorname{cosec}^{2} x=\sec ^{2} x \operatorname{cosec}^{2} x$	
Starting from the LHS , we have:	LHS $=\sec ^{2} x+\operatorname{cosec}^{2} x$
using the $\tan ^{2} x$ and $\sec ^{2} x$ identities:	$\left(1+\tan ^{2} x\right)+\left(1+\cot ^{2} x\right)=2+\tan ^{2} x+\cot ^{2} x$
Rewriting tanx as $\frac{\sin x}{\cos x}$ and cotx as as \cos sinx $:$	$=2+\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}$
combining everything into one fraction:	$\begin{aligned} & =\frac{\sin ^{4} x+\cos ^{4} x}{\sin ^{2} x \cos ^{2} x}+2 \\ & =\frac{\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \end{aligned}$
using $\sin ^{2} x+\cos ^{2} x=1$	$=\frac{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}}{\sin ^{2} x \cos ^{2} x}=\frac{1}{\sin ^{2} x \cos ^{2} x}$
splitting the fraction up into a product, giving us the RHS	$=\frac{1}{\sin ^{2} x} \cdot \frac{1}{\cos ^{2} x}=\sec ^{2} x \operatorname{cosec}^{2} x=\text { RHS }$

Solving equations

reviously, in Pure Year 1, you learnt how to solve trigonometric equations involving sinx, cosx and tanx. Now we will look t solving equations that also involve the reciprocal functions. The only difference here is that you need to use the identities and definitions we have covered in this chapter in order to simplify the equation, before you can solve it.

Edexcel Pure Year 2

Inverse trigonometric functions
A function only has an invers we restrict the which we can sketch by reflecting the $\operatorname{sinx}, \cos x$ and tanx graphs in the line $y=x$.

$$
\begin{aligned}
& y=\operatorname{arcsinx} \\
& \begin{array}{l}
\text { Domain: }-1 \leq x \leq 1 \\
\text { Range: }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{array} \text { or }-90^{\circ} \leq y \leq 90^{\circ}
\end{aligned}
$$

Reflecting $y=\cos x$ in the line $y=x$ using the domain $0 \leq x \leq \pi$ gives us its inverse function, $\arccos x$;
$y=\arccos x$
Domain: $-1 \leq x \leq 1$
Range: $0 \leq y \leq \pi$ or
$0 \leq y \leq \pi$ or $0 \leq y \leq 180$

eflecting $y=\operatorname{tanx}$ in the line $y=x$ using the din: $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ gives us it inverse function,
$y=\arctan x$
Domain: $x \in \mathbb{R}$
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ or $-90^{\circ} \leq y \leq 90^{\circ}$

Remember that since these functions are inverses
for arccosx and arctanx too, not just arcsinx.
Just like with the recirrocal functions, you may be asked to sketch a transformation of any of the inverse futis or

Example 4: a) Sketch the graph of $y=g(x)$ where $g(x)=\arcsin (x+2)-2$ b) Find the value of x, to 2 decimal places, for which $3 g(x+1)+\pi=0$		
Starting from the LHS, we have:		
using the $\tan ^{2} x$ and $\sec ^{2} x$ identities:	$3 g(x+1)+\pi=3[\arcsin (x+1+2)-2]+\pi$	
Rewriting tanx as $\frac{\sin x}{\cos x}$ and cotx as $\frac{\cos x}{\sin x}$:	$\begin{aligned} & \Rightarrow \arcsin (x+3)+\pi-6=0 \\ & \arcsin (x+3)=\frac{6 \pi}{3} \end{aligned}$	
combining everything into one fraction:	$\Rightarrow x+3=\sin \left(\frac{6-\frac{\pi}{3}}{3}\right)$	
using $\sin ^{2} x+\cos ^{2} x=1$	$\Rightarrow x=\sin \left(\frac{6-\pi}{3}\right)-3=-2.18$	

